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Abstract--A matrix solution for two-layer drape folds in compressible elastic media is used to examine the 
relative importance of layer compressibility, layer stiffness, and the presence or absence of lower boundary shear 
on fold form, principal stress direction and maximum shear stress distribution. The most obvious effect of 
decreasing the shear modulus of the lower layer is a change in principal stress orientation, accompanied by a 
decrease in maximum shear stress. Principal stress orientation, and to a lesser degree fold shape, can be further 
altered by changing the compressibility of an easily sheared basal layer. Characteristics of drape folds with 
welded and non-welded basal contacts, as observed in the field and predicted by a single-layer model of drape 
folding, are also further explored with the two-layer model. 

INTRODUCTION 

A PREVIOUS paper (Haneberg 1992), hereafter referred 
to as Part I, presented analytical solutions for two types 
of compressible elastic drape folding, which corre- 
sponded to the welded and non-welded end-members of 
Stearns (1978). The geologic significance of these two 
lower boundary conditions was discussed at some 
length, and will not be repeated here. An important 
conclusion of Part I was that details of drape fold 
geometry at depth, as well as the orientation of minor 
structures throughout the draped layer, should be con- 
trolled by the presence or absence of shear along the 
lower boundary. Compressibility also affected fold form 
to a small, but perceptible, degree. The Part I models, 
however, were limited to single-layer drape folds with an 
infinitesimally thin lower boundary. This paper extends 
the Part I analysis by developing a matrix solution for 
two-layer drape folds in compressible elastic media, so 
that the effects of lower boundary shear can be exam- 
ined using a basal layer of finite thickness. In particular, 
it will be shown that the effects of variable shear across a 
basal layer of finite thickness are less obvious than in the 
single-layer folds of Part I, although the same basic 
patterns persist from one model to the other. 

There has not been much previous work on the 
mechanics of multilayered drape folds. Reches & John- 
son (1978) explained how to formulate the compressible 
elastic problem analyzed in this paper, and in general 
how to formulate matrix solutions to folding problems, 
but gave examples only for incompressible multilayers. 
Koch et al. (1981) investigated the effects of contact 
strength on monoclinal flexure of sedimentary se- 
quences above laccolithic intrusions, which is a problem 
mechanically indistinguishable from draping over a bur- 
ied fault. Their analysis was limited to stacks of simple 
elastic plates. With jack et al. (1990) conducted a series of 
laboratory experiments, which subjected single and mul- 
tiple clay layers to both extension and vertical displace- 

ment. However, they do not appear to have systemati- 
cally evaluated the effects of an easily-sheared basal 
layer or contact. 

TWO-LAYER MECHANICAL MODEL 

General solution 

The solution of plane-strain, multilayered folding 
problems in which axial shortening is the primary mech- 
anism of folding has been discussed by a number of 
previous authors (e.g. Reches & Johnson 1978, Johnson 
& Pfaff 1989, Cruikshank & Johnson 1993). Each fold is 
assumed to be part of an infinitely long, periodic train of 
folds, and biharmonic solutions of the type developed in 
Part I are written for each layer. Then, boundary con- 
ditions are matched across each interface between layers 
to insure that both stresses and displacements are con- 
sistent in adjoining layers. For drape folds formed solely 
by vertical uplift, however, it is not necessary to include 
axial shortening terms, which simplifies the analysis 
considerably (Reches & Johnson 1978). Variables used 
in this analysis (Fig. 1) are the same as those 
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Fig. 1. Illustration of geometric parameters used in the two-layer 
drape-fold model.  With the exception of two separate layer thickness 

values, these parameters are identical to those in Part I. 
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in Part I, except that the total thickness of the fold is the 
sum of two individual layer thicknesses, T1 + T2. Verti- 
cal displacement along the lower boundary is specified 
using a Fourier sine series, which is analogous to throw 
of 2B0 across a buried vertical fault zone of width 2h. 
Neither horizontal slip along the lower boundary nor 
layer-parallel extension are allowed in this model. The 
symbolic manipulation capabilities of the computer pro- 
gram Mathematica (Wolfram 1988) were used exten- 
sively during derivation of the two-layer solution. 

By analogy with Part I, the horizontal (u) and vertical 
(v) components of displacement within layer 1, normal- 
ized relative to the fold wavelength, L, are 

Ul- - [ (~  ~ + c 1 2 L  L) elz+ ( ~  2+c l4z)e - lz  I cos lx (1) 

where n is any integer and L is the wavelength of the 
fold. 

The layer 1 and displacement components have been 
multiplied throughout by GI[G 1 = 1 and the layer 2 
displacement components by G2/G2 = 1, which allows 
the four material constants of the two-layer system to be 
expressed in terms of three dimensionless numbers: 
G2/Gb 2~/Gx and 22]G 2. The second layer is the lower- 
most of the two, so values of Gz/G 1 < 1 mean that the 
lower layer is more easily sheared than is the upper 
layer. In terms of Young's modulus (E) and Poisson's 
ratio (v), the shear modulus ratio is 

G1 E1 ~,1 + 1.'2]" (6) 

vl _ (3c12 -- C111) + all (c12 -- cll0 

L -  n~r 1+  ~11 

_ Z ] _lz -  12-£f 

! 2, 
3C14 + c13l) + all (c14 --I- c131 ) 

+ 

net 1 +~11 

+c14 tz)sin  (2) 

and the analogous normalized components of displace- 
ment within layer 2 are 

U2--[(~-!-t- (~-~+C24L) ]cos/x (3) 

I)2 _ G22 (c22 - c21/) z] lz 

- -  -- G2222. ) - c12 ~ e L n:t(1 + 

22 
(3C24 + C231) + G2 (C24 + c230 

+ 

+/sin +C24 

1 /  

Single subscripts represent the layer number, whereas 
double subscripts represent both the layer number (first 
subscript) and the number of the variable within that 
layer (second subscript). For example, c23 would be the 
third constant of integration for the second layer. The z- 
axis is positive upwards, and the wave number is 

I= naff L , (5) 

As in Part I, 21/G1 reflects the compressibility of layer 1, 
or 

21 2Vl 
G1 - 1 - 2 v l  (7) 

and the third material constant reflects the compressi- 
bility of layer 2, or 

22 _ 2V2 
G 2 1 -- 2Y 2' (8) 

As before, the single subscripts denote the layer num- 
ber. In practice, layer compressibilities can be specified 
in terms of Poisson's ratio, from which 21/G 1 and 22/G z 
can be easily calculated. 

Multiplying equations (1)-(4) by L and differentiating 
once each with respect to x or z, as appropriate, yields 
the dimensionless displacement gradients 

0Ul -- I[(Cll + c12z)e Iz + (c13 q- C14Z) -lz] sin IX (9) 
Ox 

Oul - {[lcll + (1 + lz)cle]e tz 
Oz 

- [/c13 - (1 - lZ)Cl4]e -lz} cos lx (10) 

 v1{[ c12c1'+  c12clll  ] 
-- . . . . . .  Cl21Z e lz 

3C14 21 + c131 + -~1 (c14 -I- c13l) 

+ 21 1 + - -  
G1 

+c  le / cos lx (11) 



Drape folding of elastic layers--II 925 

(I c1° 1 c lz -Cnl  ~--~1 (c12 - 
Ovl . . . . . . .  (lz + 1)c12 e Iz 
~zz 1 + _ ~  1 

C14 -t- Cl31 + ~ (C14 "+ c13l ) 

1 + 2__A_l 
61 

+ ( l z -  1)cl4]e-lZ I 

IJ 
0U2 __ 
Ox 

sin lz (12) 

- - - -  --1[(C21 + c22z)e k + (c23 + c24z)e -tz] sinlx 

(13)  v2(I3c22c21'+ 'c22c21l' t 
2._..k 1 C221 e tz 

~ x =  1 + G2 

~,2 (3C24 + C231) + G2 (c24 at- c23/) 

+ 22 
1 + G--- ~ 

+ c241zle-lZ ) 

0U2 _ {[C211 + C22(1 + lz)]e tz 
Oz 

- [c23l - c24(1 - lz)]e -lz} cos Ix 

cos Ix (14) 

(15) 

[,(3C22 ~'2 01"2 _ -- C211) + G2 (c22 - c211) 

'~'2 Oz 1 + G--~2 

! 
- (1 + lz)c2zle tz 

l 
(3c24 + c23l) + -~2 (c24 + c J )  

- -  ° 

l+'h 
G2 

+ (1 - Iz)c241e-lz } sin lx. (16) 

] J 
these gradients are identical in form to those in Part 1. 

Once the eight displacement gradients have been 

evaluated, normalized stresses in each of the layers can 
be calculated using 

O'xx,1 _ (,~ 1 ) ~ X  1 210Vl (17) 
G1 ~ + 2 ~ Ga Oz 

azz,1 _ (~'1 2101;1 ~'1 0Ul (18) 
G1 + / oz +G-, ox 

Oxz'l--z(OUl + 0vl) (19) 
GI \ Oz Ox ] 

G~- G1 ~-~2+2 -~-x +~22-~-z] (20) 

°zz'2 - G2 [( )0122"t- "~'20U2] (21) 
G1 G1 ~ + 2 Oz G 20xJ 

axzA_ 2 G2 (0u2 0v2) (22) 
G1 G-11\-~zz + Ox ]" 

Tensile normal stresses are considered positive. Litho- 
static normal stresses (Hafner 1951) are ignored in this 
analysis in order to focus attention on the perturbed 
stress and displacement fields that arise during folding. 
If desired, however, lithostatic terms can be included by 
simply adding them to equations (17), (18), (20) and 
(21). 

Particular solution 

In Part I, the particular solutions were found by 
algebraically solving four linear equations in order to 
determine the four constants of integration. In the two- 
layer model, however, there are twice as many constants 
of integration. Although it is possible to solve algebraic- 
ally a system of eight linear equations, it is extremely 
impractical for folding problems. An algebraic solution 
to the two-layer problem was obtained using Mathe- 
matica (Wolfram 1988). However, the resulting ex- 
pressions were several hundreds of lines long and 
computer limitations slowed the algebraic simplification 
algorithm to a crawl. In order to circumvent this diffi- 
culty, previous workers (e.g. Reches & Johnson 1978) 
used matrix methods to solve the equations simul- 
taneously. This paper uses an analogous method for two 
compressible elastic layers, which can be expanded to 
model an arbitrary number of layers. 

Because both layers are originally fiat, the vertical 
normal (Ozz) and horizontal shear (Oxz) stresses can be 
used as a first-order approximation of the normal and 
shear stresses acting along each layer boundary. As the 
slopes of interfaces between drape-folded layers in- 
crease beyond about 15 ° , however, this approximation 
becomes increasingly erroneous. Similar problems are 
encountered in compressional or extensional folding 
problems, in which the interfaces separating mechan- 
ically distinct layers must have some original pertur- 
bation in order for dynamic instabilities to grow. 
Accuracy of the boundary stress approximations can be 
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increased either through higher-order algebraic 
approximations for slopes up to about 30 ° (Johnson & 
Pfaff 1989) or least-squares interface matching methods 
for high-amplitude folds (Fletcher 1974, Cruikshank & 
Johnson 1993). 

The upper boundary of the drape fold is assumed to be 
traction free, subjected to neither shear nor normal 
forces. This corresponds to the Earth's surface. Math- 
ematically, the first two boundary conditions are: 

axz,~ = 0 (23) 

azz A = 0 (24) 

evaluated at z = O. In order that the contact between the 
two elastic layers does not separate during folding, 
layer-parallel and layer-perpendicular displacements 
and stresses must be equal in both layers. This gives the 
four internal boundary conditions 

Oxz,1 = axz,2 (25) 

azz,1 = Ozz,2 (26) 

U 1 = U 2 (27) 

vl = v2 (28) 

evaluated along the undeformed contact, which is given 
by the Lagrangian co-ordinate z = -T~. 

Boundary condition (25) implies that the contact 
between the two compressible layers is strongly bonded, 
so that no slip can occur along the interface between the 
two layers. Instead, layer-parallel displacement with the 
lower portion of the two-layer fold can be simulated by 
reducing the shear modulus of layer 2. This combination 
of a no-slip boundary condition and an easily sheared 
lower layer distributes shear throughout layer 2, which 
has finite thickness, rather than along an infinitesimally 
thin contact as in Part I. In this manner, conclusions 
about the importance of basal shear on fold form and 
minor structures can be more fully examined. If free slip 
between the two layers were desired, however, equation 
(25) could be re-written as ax~a = 0 and axz.2 = O. 
Finally, the base of layer 2 is subjected to the same 
displacement conditions as in Case I of Part I 

u2 = 0 (29) 

v2 = bn sin lx (30) 
L 

evaluated at z = - ( T 1  + T2). Thus, there is no slip 
allowed along the base of layer 2. The Fourier coef- 
ficients in (30) are given by 

__ 2Bo/L [ (nvr h ) _  ( [ 1 -  4n 2 (h) 2 
bn - nz  - 4n3ct(h/L) 2 [cos 

× [1 - cos (2 h)] t  cos (n~r h)  - [4n2 (h)2 

- 2 n ( h ) s i n ( n z t h ) ] s i n ( 2 L ) ) ( - 1 ) n  ] (31) 

which is identical to that used in Part I. As before, any 
Fourier sine series could have been used to specify 
vertical displacement along the base of layer 2. 

Each of the boundary conditions is evaluated by 
substituting the appropriate stress or displacement 
equation(s) into equations (23)-(30), and setting z equal 
to 0, -T1,  or -(T1 + Ta) as appropriate. This will give 
rise to eight linear equations that can be rearranged and 
put into the matrix form 

Me = f 

or, expanding the boundary condition equations, 

0 m12 0 m14 0 0 0 0 

m21 m22 m23 m24 0 0 0 0 
0 m32 0 m34 0 m36 0 m38 

m41 m42 m43 m44 m45 m46 m47 m48 
m51 rn52 m53 m54 m55 m56 m57 m58 
m61 m62 m63 m64 m65 m66 m67 m68 

0 0 0 0 m75 m76 m77 m78 
0 0 0 0 m85 m86 m87 m88 

Cll 
C12 
C13 
6'14 ~ • 
C21 
6'22 
C23 

C24 

0 
0 
0 
0 
0 
0 
0 

~bn 

(32) 

This system of eight equations must be solved repeatedly 
for many values of n (in this paper n = 1 . . . 100), and 
the results added together to arrive at an adequate 
approximation of the desired boundary displacement. 
The 42 non-zero elements of M are listed in the Appen- 
dix. 

Drawing an analogy from the vocabulary of structural 
engineering, M is the stiffness matrix, which takes into 
account the material properties and thicknesses of the 
layers. Likewise, f is the driving vector, which character- 
izes the width of and throw across a buried vertical fault. 
In this problem, vertical uplift along the base of layer 2 is 
the sole component of the driving vector. 

The coefficient vector c can be calculated using one of 
the linear equation solvers available in most mathemat- 
ical subroutine packages. There are, however, two 
caveats. First, the method of solution must employ some 
form of pivoting because, as the problem is formulated 
in this paper, the diagonal elements rnl 1 and m33 are 
zero. Second, the stiffness matrix M tends to be highly 
ill-conditioned. This means that small changes in the 
driving vector f will produce large changes in the coef- 
ficient vector c. In order to circumvent potential con- 
ditioning problems, the examples presented in this 
paper were solved using L - U  decomposition and back- 
substitution with iterative improvement (Press et al. 
1988). 

RESULTS 

The effects of contrasting layer stiffness and layer 
compressibility can be illustrated-using the series of four 
examples summarized in Table 1. The objective of these 
numerical experiments is to investigate the transition 
from a welded to a non-welded contact (Stearns 1978) by 
varying the stiffness and compressibility along the base 
of a theoretical drape fold. In Part I, Case I corre- 
sponded to a welded contact along which no layer- 
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Table 1. Geometry and material constants for Examples 1-4 

Example T~IL T~IL Bo/L hlL G2IG 1 v I v 2 

1 0.05 0.05 0.01 0,01 1.00 0.10 0.10 
2 0.05 0.05 0.01 0.01 0.10 0.10 0.10 
3 0.05 0.05 0.01 0.01 0.10 0.10 0.25 
4 0.05 0.05 0.01 0.01 0.10 0.10 0.49 

parallel slip was allowed and Case 2 corresponded to a 
non-welded contact with no shear strength. Example 1, 
in which neither stiffness or rigidity vary between the 
two layers, is identical to a Case I fold of thickness T / L  = 

0.10 in Part I. In the other  three examples, the stiffness 
and compressibility contrast between the two layers is 
varied. Layer  thickness, fault zone width and vertical 
displacement along the lower boundary are held con- 
stant in all four examples. The model results are pre- 
sented in four ways: fold form; displacement field; 
principal stress trajectory field; and maximum shear 
stress field. The first three categories are familiar to 
geologists; however,  because tensile stresses are defined 

as positive, the greatest principal stress (o~) is the most 
tensile or least compressive principal stress. Likewise, o3 
is the most compressive or least tensile principal stress. 

For the examples given below, maximum shear stress 
(e.g. Pollard & Segall 1987) values were calculated on a 
grid of 21 rows x 201 columns, and the values from four 
grid points were used to calculated an average value for 
each of 4000 quadrilaterals. Average values mask both 
the highest and lowest point values associated with each 
quadrilateral; however,  the maximum and minimum 
calculated values are given along the scale bar beneath 
each shear stress plot. The displacement solutions de- 
rived above were used to transform each originally 
square element into its deformed shape, allowing the 
average maximum shear stress within each deformed 
quadrilateral to be plotted as part of a gray-scale dia- 
gram. 

When there is no stiffness or compressibility contrast 
between layers, the two-layer solution (Fig. 2) produces 
results identical to the Case I single layer solution (Part 
I). 

a. Fo l d  f o r m  

J 

. /  

b. Displacement field 

l l l l l l l l l l l l l l l l l l l  I I I l, ~ " ' l t t t l 1 t t t 1 t t t | t t t t t t t t t i 

c. Principal stress trajectories 

d. 

÷ ÷ 1' t" ÷ ÷ ÷ 1' 1' 1' 1' 1' ÷ 1' Jr 1' 1' ÷ 1' ÷ ÷ ~t ~t ÷ × a . . ~ . , - , . ~ - - * - - , - ~ - + ÷ ÷ ÷ ÷ + - * - ÷ + - * - - * - ÷ ÷ ÷ ÷ ~  

M a x i m u m  s h e a r  stress 
. . . . . . . . . . . . . . .  ~ ,~ ~,,,~,~ ~ii~..:~ ~ ~ii~ii~iiiiiii i!i~i~iiii~iiiiii~i~!ii~:~ii~ I 

I~ ~ ~ ~ ~ ~ ,  1~.~,~ ~ ~.~ ~;~ ~ ~ ~ ~ ~ i ~ ! ~ i ~ ~ ~ % ~  ~ ~ ~ :=~,,~ :~ ~ ~. : I 
I~ ~ ~ : : ~ ; ~ : ~  ~ [ ~ [ ~ : ~ 1 ~ [ ~ ` ~ t ~ ; ~ ~ ; ~ % ~ ; ~ ; ~ i  ~ ~ . ~ ; ;  ~ ~ ~[ ~ ~ : . : .  ~ ::: ~ ~ :. :.:.: ~ ::. ~ ;~ ~ : l  

0.00 0.46 

Fig. 2. Results of Example 1, which is identical to a Case I (welded base) fold of thickness T/L  = 0.1 in Part I. (a) Fold 
form, with black lines used to denote the two layers, and gray lines used to denote passive markers within each of the layers, 
The passive markers are kinematic indicators that deform with the layer but have no mechanical effect. (b) Displacement 
field, showing resultant vectors ( ~ ) . O u t l i n e s  of the two layers are shown in the background. (c) Principal stress 
trajectory field. Long axes represent the most tensile principal stress (el) , whereas short axes represent the most 
compressive principal stress (03). Outlines of the two layers are shown in the background. (d) Averaged maximum shear 
stress intensity, with minimum and maximum values indicated on the scale bar. No horizontal or vertical exaggeration in any 

of the figures. 
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a. Fold form 

/ 

/ 

b. D isp lacement  f ield 

!...,,KJ,~LL~L~L±J.,,LI,~.J.J~,I~L~tJ~J~,.Io,,t~.~,,." " " r ' I " " t " ' T 3 " Y T  t - T - - t ' t - F r T ' f  " £  " t  ~ t 

! l l l l l l l l l l l l l i l l l l l l ~ . - ' ~ * ' ~ I t t t t t t l t t t t t t t  I 

j I I I | I I | ~ I | I I l I I I i i i i i i i , " ~ t I I I | t t t t t t t t t t t t t t t t t t ~ 

i .,.:..! • .. L.,,L,.:. £: .~J.J. ,~L~j . , .~ L ~t. .J.J~. ~,~ J ~ J , J ,  J ~ J ~ , L ~  . . . , t ~ L t ~  t ' ' T ' ' f ' T ~ ' ' ~ ' ' 3 ' ' T ' ~ ' t ' ' T ~ t ~ I ~ ' ~ T  ~ r ' 'W~ f ~ W £  ~ "t 

c. Pr incipal  stress trajector ies 

÷.:++, .+ +.+.4.~+-÷-~÷ + , H , , . + + . , + ~ . . F + + + q . ~ = ' * ' - ~ " ~ " ~  T 

-F. +., J r+  +". +.,+ +~,-F,.,+..,..÷ ~ ÷.-. ¥.~.~¥. h,~.~-..~-~..~-..~,~.. ~-,~ ~ ~ e ' ~ ' ~ ~ " ~  ~ -~ '~ ' ~ "~ "~ "~ '~  ~ ~ '~"~""~~-~"~"~ 

d. Max imum shear  stress 

0.00 4.10 

Fig. 3. Results of Example 2, illustrating the effects of an easily-sheared lower layer with no compressibility contrast. 
Explanations for parts (a)-(d) are the same as in Fig. 2, and material constants shown in Table 1. 

When the stiffness of the lower layer is reduced by an 
order of magnitude, however, subtle changes begin to 
occur (Fig. 3). There is essentially no difference in the 
forms of Example 1 and Example 2 folds; however, the 
resultant displacement vectors in layer 2 of Fig. 3 are 
directed slightly inward. For comparison with the two 
end-members developed in Part I, this is the beginning 
of a transformation from the distinctly concave- 
downward, N-shaped displacement field characteristic 
of Case I folds to the concave-upward, U-shaped dis- 
placement characteristic of Case II folds. Stress trajec- 
tories are more nearly parallel to the interface between 
layers 1 and 2 than in Example 1 (Fig. 2) stress trajec- 
tories, because shear stresses along the interface are 
approaching zero. The maximum shear stress also drops 
nearly an order of magnitude, from 4.10G1 to 0.46G1, 
between Example 1 and Example 2. In both cases, 
however, elevated shear stresses are concentrated 
directly above the fault scarp. 

Example 3 (Fig. 4) is an intermediate case included to 
illustrate the relative insensitivity of the model to small 

changes in layer compressibility. The stiffness contrast 
between the two layers remains at G2/G1 = 0.1, but the 
Poisson's ratio of layer 2 is increased from v2 = 0.10 to v2 
= 0.25. There are two effects. First, there is a barely 
perceptible tilting of principal stress axes within and 
along the boundaries of layer 2. This tilting is best 
observed by overlaying enlargements of Figs. 3(c) and 
4(c) on a light table or computer screen. Again recalling 
the definition of principal stress planes, the small degree 
of rotation from horizontal and vertical means that 
layer-parallel shear stress is increasing within layer 2, 
and is also being transferred to layer 1. The second effect 
is a small increase in maximum shear stress from 0.46G1 
in Example 2 to 0.58G1 in Example 3. 

Much more noticeable changes occur if the lower 
layer is given a Poisson's ratio of v2 = 0.49, making it 
essentially incompressible (Fig. 5). First, the drape fold 
becomes tighter, particularly through the upper layer. 
Second, the U-shaped displacement vector field be- 
comes even more strongly developed. Third, principal 
stress axes along the boundaries of layer 2 are rotated 
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a. Fold form 

1 / 

b. Displacement field 

~ . , L L J , ~ _ ~ j  _ ~ . ~  t~r~T=~=~o~-1,~,.T~,.r..~,.t ..=.r.. r ..~ r=.. r.. l, j 
! ~ l l ~ i l ~ l $ ~ l ~ l l l l l ~ - ~ t t  t i t t ~ t t t t t t t t t t t t t t  t t i  
LJ -~ -L ,L~ . , , L& . . . ~L t J . _L~ , . , L , L~L .L , . L , t ~ j . . ~ . . , L  j , j " / ~ ~ " " r  T'T"~'r"W~.r-T--,T,-~,f....~--.f--r,.,r ,T .  i 

c. Principal stress trajectories 

4 " + + + + + ' ~ + + 4 , 4 , 4 ~ - + + + ~ ~ ' ~ ~ " " * ' - * ' ~ - , - - - , - , - ~  4- 

d. Maximum shear stress 

0.00 0.58 

Fig. 4. Results of Example 3, illustrating the effects of an easily-sheared lower layer with a moderate compressibility 
contrast. Explanations for parts (a)-(d) are the same as in Fig. 2, and material constants shown in Table 1. 

approximately 45 ° from horizontal and vertical. Princi- 
pal stress orientation within layer 2 is also highly vari- 
able. Notice that, on the left-hand side of Fig. 5(c), the 
state of stress within layer 2 changes from layer-parallel 
deviatoric compression near the underlying fault to 
layer-parallel deviatoric tension away from the underly- 
ing fault. The reverse is true on the right-hand side of 
Fig. 5(c). Fourth, the maximum shear stress increases 
slightly, from 0.58Gt in Example 3 to 0.72G1 in Example 
4, and a small zone of elevated shear stress begins to 
develop near the base of layer 1. 

One of the major conclusions of Part I was that non- 
welded (Case II) lower boundaries should become 
asymmetric during draping, and that the inflection point 
of the lower boundary should shift slightly towards the 
upthrown side of the fault. The gradual development of 
concave-upward, or U-shaped displacement fields in 
Examples 2-4 shows that the same asymmetry develops, 
albeit much more weakly, in two-layer drape folds with 
easily sheared lower layers. The asymmetry is empha- 
sized by a plot showing the curvature, or second deriva- 

tive, of the height of the deformed interface (z + v) with 
respect to the final horizontal co-ordinates (x + u), of 
the passive marker within layer 2 (Fig. 6). Large abso- 
lute values indicate tight folds, whereas small absolute 
values indicate open folds; positive values reflect 
concave-upward curvature, whereas negative values in- 
dicate concave-downward curvature. In Example 1, 
both the positive and negative peaks have approxi- 
mately the same width and amplitude. This means that 
the deformed passive marker developed sinusoidal sym- 
metry during deformation. In Example 4, however, the 
concave-upward portion of the drape fold is wider and 
more open than the concave-downward portion, just as 
in Case II of Part I. In addition, the entire Example 4 
curve is shifted slightly to the right. 

DISCUSSION 

A series of numerical experiments shows that the 
distinctive end-member characteristics of drape folds 
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Fig. 5. Results of Example 4, illustrating the effects of an easily-sheared lower layer with a strong compressibility contrast. 
Explanations for parts (a)-(d) are the same as in Fig. 2, and material constants shown in Table 1. 

with welded and non-welded bases, described pre- 
viously in Part I, can be qualitatively reproduced using a 
two-layer mechanical model with an easily sheared, 
nearly incompressible base. These characteristics, how- 

2 0  

da(z+v) 

d ( x + u )  2 

10  

0 

- 1 0  

- 2 0  

- 3 0  

Example I 

~ Example 4 
1 

r -  

-6.4 -0'a 0 0:a 0:4 
x + u  

L 

Fig. 6. Curvature of passive markers from Examples 1 and 4. Both 
markers were originally straight lines at a depth ofz /L  = -0.075. The 
asymmetry of the drape-folded markers is indicated by the markedly 

asymmetric curvature of the Example 4 marker. 

ever, are not as strongly developed as in Part I. This may 
be because the basal contact in Case II of Part I was 
infinitesimally thin, perfectly frictionless and perfectly 
incompressible. The present analysis, in contrast, treats 
a basal layer of finite thickness with a finite shear 
modulus and some compressibility. The effects of large 
vertical displacement and layer parallel extension, 
which have been investigated in the laboratory by others 
(e.g. Withjack et al. 1990), remain uncertain. 

Whereas the effects of a weak basal layer could have 
been predicted to some degree from the results of Part I, 
the effects of a compressibility contrast were not evident 
in the single layer solution. At the very least, this 
analysis shows that compressibility contrasts can pro- 
duce noticeable changes in stress orientation and magni- 
tude, as well as small changes in fold form (cf. Reches & 
Johnson 1978). Geologically, then, it might be import- 
ant to distinguish between slow and rapid deformation 
of a saturated clay or shale. If deformation were slow, 
excess pore pressures might be quickly dissipated and 
the hypothetical saturated layer would become effec- 
tively very compressible. If the deformation were rapid, 
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on the other hand, then the saturated layer would 
become very nearly incompressible. In the parlance of 
soil mechanics and modern poroelastic theory (e.g Rice 
& Cleary 1976), these two modes of deformation corre- 
spond to drained and undrained loading. 

The four examples given here suggest that one might, 
in principle, be able to infer both stiffness and compres- 
sibility contrasts by careful mapping of minor structures 
or strain distributions in real folds. To wit, the only 
difference between Examples 2, 3 and 4 is the compressi- 
bility of the lower layer. Although there is little percept- 
ible difference between the idealized elastic layers in 
Examples 2 and 3, there is a noticeable difference 
between either of these two and Example 4. Whether or 
not the differences will be significant enough to be 
discernable in rocks is another matter, although it has 
been shown that careful analysis of mechanical stratigra- 
phy can be used to successfully model the general forms 
of real folds (Johnson & Pfaff 1989, Cruikshank & 
Johnson 1993). The complicated inter-relationships 
among geometry, stiffness and compressibility, how- 
ever, suggest that oversimplified attempts to infer details 
of subsurface structure from the surface expression of a 
fold may be prone to failure. Each additional layer 
confounds the problem of subsurface prediction, which 
was first raised with regard to single-layer drape folds in 
Part I. 

Acknowledgements--This work was supported primarily by the New 
Mexico Bureau of Mines and Mineral Resources, with additional 
funding from the United States Geological Survey through the New 
Mexico Water Resources Research Institute (grant 01423954). Dis- 
cussions with K. M. Cruikshank help to clarify some mechanical 
issues, and comments by A. M. Johnson and an anonymous reviewer 
improved the manuscript. An unpublished manuscript by A. M. 
Johnson and R. C. Fletcher, "Theories of Folding and Density 
Instability", was also invaluable during this work. 

saturated porous media with compressible constitutents. Rev. Geo- 
phys. & Space Phys. 14,227-241. 

Stearns, D. W. 1978. Faulting and forced folding in the Rocky 
Mountains foreland. In: Laramide Folding Associated with Base- 
ment Block Faulting in the Western United States (edited by Mat- 
thews, V., III). Mere. geol. Soc. Am. 1$1, 1-37. 

Withjack, M. O., Olson, J. & Peterson, E. 1990. Experimental models 
of extensional forced folds. Bull. Am. Ass. Petrol. Geol. 74, 1038- 
1054. 

Wolfram, S. 1988. Mathematica. Addison-Wesley, Redwood City, 
California. 

APPENDIX 

Elements of the stiffness matrix M are found by evalutating the two 
upper, four internal, and two lower boundary conditions at z/L = 0, 
z/L = - T  t and z /L = - ( T  l + 7"2), respectively. Terms in each of the 
eight boundary condition equations are then grouped in order to 
isolate the coefficients of ctt • - • c24. The 42 non-zero elements of M 
are: 

12+&\ 
___ 4 ].......~G / (A1) 

ml4 = ml2 (A2) 

--- - 21 (1 + ~'1/ m21 (A3) 

m22 --- ½ml2 (A4) 

m23 --- mE1 (A5) 

m24 = --m22 (A6) 

m32 = m12 e-tr '  (A7) 

m34 = m12 eIT' (A8) 

/ 2 + & l  
= 4 - -  - - - - - ~  m36 G1 1+ 
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